Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.

نویسندگان

  • Dániel Szunyogh
  • Béla Gyurcsik
  • Flemming H Larsen
  • Monika Stachura
  • Peter W Thulstrup
  • Lars Hemmingsen
  • Attila Jancsó
چکیده

Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mn(II) and Zn(II) interactions with peptide fragments from Parkinson's disease genes.

Two peptide sequences from PARK9 Parkinson's disease gene, ProAspGluLysHisGluLeu, (P(1)D(2)E(3)K(4)H(5)E(6)L(7)) (1) and PheCysGlyAspGlyAlaAsnAspCysGly (F(1)C(2)G(3)D(4)G(5)A(6)N(7)D(8)C(9)G(10)) (2) were tested for Mn(II), Zn(II) and Ca(II) binding. The fragments are located from residues 1165 to 1171 and 1184 to 1193 in the PARK9 encoded protein. This protein can protect cells from poisoning ...

متن کامل

Spectrophotometric Study of New Schiff Base Complexes with Some Metal Ions in Methanol Solution

The complexation reactions between N,N'-3,6-dioxa-1,8-octanebis (salicylaldimine) [saldioxen(I)] and Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) were studied spectrophotometrically in methanol solution at 25 °C. The stoichiometry of the complexes were obtained as 2:1 and 1:1 sadioxen-metal ion using mole ratio method. The formation constants of the complexes were determined, a...

متن کامل

Zn impacts Cu coordination to amyloid-β, the Alzheimer's peptide, but not the ROS production and the associated cell toxicity.

Combined coordination of Zn(II) and Cu(I) or Cu(II) to the amyloid-β peptide has been investigated using XANES, EPR and NMR spectroscopies. While Zn(II) does alter Cu(II) binding to Aβ, this has no effect on (Aβ)Cu induced ROS production and associated cell toxicity.

متن کامل

Construction of a Carbon Paste Electrode Based on Novel Thiolated Ligand Capped Gold Nanoparticles for Determination of Trace Amounts of Mercury(II)

In the present study, a simple electrochemical sensor for trace determination of Hg(II) ions in aqueous solutions was introduced. The proposed sensor was designed by incorporation of the 4-methyl-piperidine-carbodithioate capped gold nanoparticles (GNPs) into the carbon paste electrode (CPE), which provides a remarkably improved sensitivity for stripping voltammetric determination of Hg(II). Di...

متن کامل

Synthesis and characterization of mono- and heterodinuclear complexes of dinucleating macrocyclic ligand bearing hexa- and pentadentate coordination sites

Macrocyclic heterobinuclear Zn(II)–Cu(II) complexes with phenol based dicompartmental ligands possessing contiguous hexa- and penta-coordination sites were prepared by a stepwise procedure. The ligands include similar N4O2 and dissimilar N(imine)3O2 and N(amine)3O2 coordination sites sharing two phenolic oxygen atoms. The six-coordination site comprises two pyridyl pendant arms on the amine nit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 28  شماره 

صفحات  -

تاریخ انتشار 2015